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Abstract 

Explicit formulae are given in QCD for the processes which contribute 

to the hadroproduction of heavy quarks Q. The processes considered 

are 

1. q+q-Q+& 

2. g+g-Q+Q 

3. Q+&-tq+q+g 

4. Q+g-+g+g+g 

All mass effects are included. A comparison of the exact matrix elements 

with the results of the leading pole and soft gluon approximation is 

made. 
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I. INTRODUCTION. 

In the last year there has been a resurgence of interest in the theory of the 

production of heavy quark pairs in hadronic reactions. This interest is motivated 

in part by the promise of reliable experiments on the hadro-production of charmlrl, 

and also by a reported sighting of the top quark in pp collisions121. The theoretical 

progress13~4~s1 of the last year can be summarised as follows. It is now believed that 

the dominant parton reactions leading to the production of a sufficiently heavy 

quark Q are, 

(4 q(n) + u(n) + Q(m) + G(pa) 
(1) 

(a) g(n) + g(m) + Q(p3) + Q(p4) 

where the four momenta of the partons are given in brackets. The invariant matrix 

elements squared for processes (a) and (b) h ave been available in the literature for 

some timele~r@ and are given by, 

c IMM”d h&,P3,P4)/2 = 
V 2N2 

)( 

4 2 (3) 

{13}{23} - {12}2 
{ 13)’ + {23}2 + 2m2{ 12) - fy3;;;;j 

where the dependence on the SU(N) co 1 our group is shown explicitly, (V = N2 - 1, 

N = 3) and m is the mass of the produced heavy quark Q. The matrix elements 

squared in Eqs.(2,3) have been summed and averaged over initial and final colours 

and spins, (as indicated by C). For brevity, in this and the following formulae, we 

have introduced the notation for the dotproduct of two four-momenta. 

Pi.Pj = {G> (4) 

The processes of Eq.(l) lead to a cross-section for the production of charmed par- 

ticles which is predominantly centralr5]. I n addition, the transverse momentum of 

the heavy quark or anti-quark is, on the average, of the order of its mass, whilst 

the transverse momentum of the quark-antiquark pair is small. The theoretical ar- 

guments summarised above do not address the issue of whether the charmed quark 
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is sufficiently heavy that the hadroproduction of charmed hadrons in all regions of 

phase space is described via this mechanism. 

In the literature there is another class of processes which contributes significantly 

at large transverse momentum. As first observed by Kunszt and PietarinenIgl, be- 

cause of the large cross-section for the production of gluon jets at large transverse 

momentum the process 

gfg -+ 9+9 

L Q+Q 
(5) 

is likely to be the principal source of heavy quarks at large transverse momentum 

(qT >> m). This mechanism might give a large contribution to heavy particle 

production because the ratio of the relevant 2 + 2 matrix elements is extremely 

large. In fact, at 90 degrees in the parton-parton centre of mass, the gluon fusion 

mechanism is much more likely to produce a gluon than a quark. 

CIM I Lx-m) 2 
E IMbg-H) 1’ 

N 200 (6) 

The validity of this schematic reasoning has been confirmed by analysis of the full 

2 + 3 matrix elements including mass effectslgJOl. 

In view of the burgeoning theoretical interest in these processes and their poten- 

tial significance at collider energies, it seemed appropriate to recalculate the results 

of Kunszt and Pietarinen and attempt to present them in a form which would be 

accessible to a larger audience. We have therefore recalculated the matrix elements 

for the processes, 

t-4 Q(-PI) + &(-PZ) + q(ps) + v(p4) + g(ps) (7) 

(B) Q(-PI) + &(-PZ) ---t g(pz) + g(n) + g(n) (8) 

As indicated by the above notation we have calculated the matrix elements squared 

in the unphysical region in which all momenta are outgoing, 

Pl + Pz + P3 + P4 + Ps = cl (9) 

The matrix element for the one gluon four quark process in Eq.(7) is given in terms 
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of the function A a&‘], 

A(PI,Pz,P~,P~,Ps) = 

{13}2+{23}2+{14}2+{24}z+mz({12}+{34}+m2) 
2s{34} 1 

(131 (24) 
{15}{35}+ {25}{45} 

+4v 
N {15}{45}+{25}{35}-{15}{35}-{25}{45}-{15}{25}-{35}{45} ( 204) 2{23) 113) (24) (12) (34) )I 

_ (N2-4) V 2d {13)-{14)-{23)-{24) 
N a{341 (25) 051 1 

4v2 
+N - I( 

,2 1 {35}2+{45}2 
2 {35}{45} 

1 1 m2 d 4 
{15}+{25}+{15}2+{25}2+~ 

A:+A;+A:+A: 
- 4{34}2 1 

2v m= 1 I 2{34) / m2 m2 {35}2+{45}2 
N ~(34) s (15) + (25) + {15}{25} 

A-& 
+({13)-(141) A;;;\1 + ({23)-124)) I34j 1 

where, 

s = (Pl + P$ , Iid = Pi.pj ~1.~1 = p2..pz = m2 

Al = (13) 2{35) 
(25)-s’ 

A, = (14) 2{45) 
(25) 3 

A3 = (231 2{35) 
(15)-s’ 

A4 = 124) 2{45) 
(15) 3 

(10) 

(11) 

The matrix element for the two quark-three gluon process in Eq.(8) is given in 

the same notation by the function B. In turn B is defined as the sum over the 

twelve permutations of the function FB obtained by interchange of the heavy quark 

momenta (pl and pz) and the three gluon momenta (ps, p4 and ps). 

qPl,Pz,P3,P4,P5) = c FB(Pl,Pz,P3,PdrPS) 
p.3WLUt13tiO”8 

(12) 
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and FB is given by the slightly cumbersome formula, 

FB(P1,Pz,P3APd = 

+V(iV* + 1) ({12}({15}2 + (25)’ + 2m*({35} + (45)))) 
4N2 {13){14){23){24) 

V(N’ + l)m2 (s’ + 2{13}{14} + 2{23}{24} + 4m2{12}) - 
N2 8{13){14){23){24) 

-v 

1 

{13}({13}2 + (23)’ + 2m*({34} + (35))) + ({15}* + {25}’ + 2m*({35} + (45))) 

{34){14){15){25) 2{34){14){23) 1 
+Vmz 

[{34)@)@5) 

({12)- 3m*) + (3{13){23) + 5{13){25) - 2{13)‘) 
{13){14){23){24) 1 

+Vm4 (03Y + (2312 + (1512 + {15X25) - ~031) + 

1 

(05)+ (24)) 

{34){13){24){15){25) {13){23){14){25) 1 
+2vN~ 

1 

{23)({13)’ + 123)’ + 2m*({34) + (35))) 

~{34){45){25) 1 
+vNz 

[ 

{14~{24~({14~2 + {24j2 + 2m*({34) + (451)) 
d34){45){13){25) I 

f2VN2mZ 
1 

(4{15}{25} + {13}{23} + {14}{24} - $(s + 2{34})) 

434){W{25) 1 
+vNZm2 ((34) - 2m2) _ 

1 d13H24) 4{34){;5){25) 1 _ 2VN2m4 (3” + {34Y + (4517 

~{34){45){13){25) 

+4VN2m2 
[ 

({34>2 + {35>2 + {45}2) 2{23}’ 

s2{34}2 + s{34}2{15} 1 
+vzm2 [& (g - gg2 + {3:yf5)2 + ;~;~::;;:;“;:;‘,] 

+V2m2 2sm2 

4N2 1 

((13)’ + {23}’ - ((13) + {23}){45}) + 

{13){23){14){25) ~13~~23~~14~~25~ - {13);:;{25)2 I 

+V3m2 

2NZ 1 

m4 + 4m2{24} - 2{24}{25} + (s{34} + 2{15}{25} - {14}{24}) 

{13}2{24}2 {13){23){14){24) 1 
{13)I23:;14){25) - 

(5s{13} + 8{13}{23} + 6{13}{25} - 4{13}‘) 

4{13)-i14){23){=) I 

(13) 

Expressions for the spin and colour averaged matrix elements for physical processes 
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in terms of the functions A and B are given in Table 1. Fortran routines which gen- 

erate these functions are available from the authors. We have checked numerically 

that Eqs.(lO,lS) agree with the results of ref.(g). Eqs.(l0,13) have been obtained 

with the help of the algebraic manipulation program Schoonschip[ll]. 

II. THE LEADING POLE AND SOFT GLUON APPROXIMATIONS. 

In this section we explore the connection of our exact results with the leading 

pole approximation and soft gluon approximation. By using the explicit formula 

Eq.(lO), we find that in the limit of small ~34 = (ps + pq)‘, the matrix element for 

the process 

S(P1) + 4(Pz) + Q(P3) + Q(n) + Q(P5) (14) 

tends to, 

(15) 

where, 
2mZ 

2 + (1 - 2)” + _ 
834 1 ’ z = j35;3::45j 06) 

and Q2 is a large invariant of the order of s, t or u. The relevant 2 + 2 matrix 

elements are given in Table 2. This formula illustrates the way in which gluon 

fragmentation into heavy quark pairs would be inserted into Monte-Carlo programs. 

The precise definition of the longitudinal variable z may vary between Monte Carlo 

programs. In a Monte Carlo program, the terms of order $ are dropped. PQg 

is the Altarelli-Parisi function for heavy quark production[121. Note that the term 

proportional to the mass in Peg is normally dropped because it is non-leading. It 

is however necessary in the calculation of the growth of the multiplicity[‘31. 

In a similar way the matrix element for the process, 

cJ(Pl) + c?(PZ) + Q(P3) + Q(P4) + S(P5) 

in the limit of small s34 tends to, 

(17) 

c Ipgg-QQg12 + szc lMg”gg 12 $JQ&, g) + O( &) 08) 
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It is of also of interest to investigate the approximation in which the an emitted 

gluon is extremely soft. For example in the limit in which p5 tends to zero the 

matrix element for the process in Eq.(l7) becomes 

g2~lMgg-Qg/* (CF ([1,3] + [1,4] + [2,3] + [2,4] - 2[1,2] - [3,3] - [4,4]) + 2N[l,2]) 

+96xh,hP3rP4) ([1,41 + [2,31 - h31 - [2,41) 

+~~Y(P~,P~,P~,P~) (W,21 +2[3,41 - 1~31 - [2,41 - P,41 - [2,31) 

In this equation the eikonal factor for soft gluon emission is represented by a square 

bracket, 
[;,j] = {W N2 - 1 

{i,5}{j,5}’ ” = 2N (20) 

c IAP~‘~~~l* is given by Eq.(3) and the functions X and Y are given, in the notation 

of h(4), by 

x(pl,pz p3 p41 = x {12)+ 2m2 _ (12) + 2m2 (23) - 03) , I 4v 123) 1131 1121 

Y(Pl,PZ,P3,P4) = & { 13)’ + (23)’ + 2m2{ 12) - ~~~:;“2~~ 

2 

{13);23) + ;:j2 

In a similar way the matrix element for the process, 

4(m) + q(Pz) ---t Q(P3) + Q(P4) + !?(PS) 

(21) 

(22) 

in the limit of vanishing pg tends to, 

( 
CF (2[1,31 + 2[2,41 - 1% 31 - i&41) (23) 

+ ~(2[1,41 +2[2,31 - [1,31 - 12,41 - I~21 - 13,41)) 
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Note that in the leading N approximation the soft radiation is given by an eikonal 

factor multiplying the lower order hard process and weighted with a colour charge. 

For general N the soft approximation is no longer necessarily proportional to the 

lower order cross-section. It may be possible to incorporate the pattern of soft 

radiation into a Monte Carlo programl’*l using an angular ordering constraint1151. 

If the leading pole approximation is to be a good approximation then we require 

that s34 << Qs. This constraint will not hold over all phase space or for all 

choices of ma. It becomes important therefore to understand the limitations of the 

approximation. For any given choice of s and m2 the generic scale Q* is maximised 

when ItI = 1~11 = 0.5s. Thus the best case scattering occurs when the massive 

quarks recoil against a massless parton in the plane perpendicular to the incident 

beams. If we confine ourselves to this plane then the kinematics depend only on 

the energies of the three scattering partons and the relevant cross-sections are most 

easily represented on Dalitz plots. 

In Figure 1 we have generated a contour Dalitz plot of the full matrix element 

(using Eq.(13)) for the process 

dP1) + dP2) + Q(P3) +Qh) +g(ps) 

The variables E3, E4, and Es are the energies of the scattering heavy quark, heavy 

anti-quark and gluon respectively. The value of m/,/s for this plot is 0.02. This 

value is appropriate for charm or bottom production at the Cern pp collider when 

the incident partons are at intermediate or large z. There are two features to note. 

First the large peak present for small Es is simply the soft gluon contribution. We 

do not expect this to be present in the leading pole approximation. The second 

feature to note is the ridge which is present for large Es. This ridge arises because 

l/s34 is small in this region of phase space and it is just this feature which we expect 

the leading pole approximation to reproduce. 

In Figure 2 we have shaded that region of the Dalitz plot of Figure 1 where the 

leading pole approximation and the full matrix element agree to within 20%. We 

see that there is good agreement for Es large as expected. For ES small the leading 

pole result is much smaller than the full result since the leading pole result does 

not reproduce the soft gluon peak. In the central portion of the plot the leading 

pole result over-estimates the full matrix element by a factor of approximately two. 
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This overestimation is not however very important since the full matrix element is 

very small in this central region. 

The encouraging agreement between the leading pole and the full result which 

we have just demonstrated represents the best case result. If the mass of the heavy 

quarks increases or if the value of Js decreases then the leading pole approximation 

quickly breaks down. For example in Figure 3 we show a plot similar to Figure 2 

for the case m/,/s = 0.1. Note that the 20% band which was present in Figure 2 for 

Es large has now disappeared. (There is in fact still a very thin band of agreement 

right at the large Es boundary but even this disappears as m/,/s increases further.) 

These results suggest that the leading pole approximation provides a good de- 

scription of heavy quark production provided firstly that the produced quarks recoil 

against a single gluon with large ET, and secondly that the value of m/,/s for the 

production satisfy m/Js 5 0.10. 
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Tables 

Process ElW 

Q(n) + &(Pz) + q(m) + +4) + dps) g6A(-pr~~,~3,~4r~~)/4/NZ 

I + q(n) + Q(Ps) + Q(P~) + g(n) g6Ah,m, -PZ, -~1,~5)/4/N’ 

s(m) + q(m) + Q(Ps) + Q(P~) + q(n) -g6A(n,n>Ps> -PZ, -p1)/4/N/V 

Q(PI) + &(Pz) + g(p3) + g(p4) + g(ps) g’B(-PI, -~z,~3,~4r~5)/4/N~ 

s(pd + g(n) + Q(p3) + Q(P~) + gb.d g6B(n,nrps> -~1,-~2)/4/V’ 

1 

Table I. Spin and colour averaged matrix elements for physical processes in terms of 

the functions A and B. 

Process C IW 

q(m) + I + g(p3) + g(p4) g4V/2/N3(V/t/u - 2N/s2)(t2 + 2) 

s(n) + q(m) + g(m) + cl(pr) s4/2/N2(V/s/u - 2N/t2)(s2 + u’) 

dPl1 + S(Pz) + g(p3) + g(p4) 4g4N2/V(3 - $ - $ - 3) 

Table II. Spin and colour averaged matrix elements for 2 + 2 processes. s = (~1 +pz)‘, 

t = (pl - p3)2 and u = (pz - ps)‘. 
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Figure Captions 

1. Three dimensional Dalitz Plot of the full matrix element squared for the pro- 

cess of Eq. 23 as a function of the energies, Es, Ed, and ES of the three 

scattering partons for m/,/s = 0.02. The variable plotted along the s-axis is 

(Es - E~)/v%. The variable plotted along the y-axis is Es/\/S. The z-axis 

gives the full matrix element squared in units of S-i, ( z IM)’ = 5). 

2. Comparison of the leading pole and full results for m/,/s = 0.02. The solid 

closed curve shown here encloses the kinematically allowed region of phase 

space. The shaded portion of this plot marks that region of phase space 

where the leading pole and full results agree to within 20%. 

3. Comparison of the leading pole and full results for m/Js = 0.10. Notation is 

as for Figure 2. 
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